Microcontroller Internet Connectivity

Dr. Svetlana Avramov-Zamurovic

Dr. Carl Wick

United States Naval Academy Annapolis, Maryland

Presentation Overview

- Introduction
- Potential Applications
- USNA NIST collaboration
- Hardware Solution
- Software Implementation
- System Demonstration
- Conclusions

Introduction

- Need cost-effective, compact hardware that can connect to the Internet
- Low-cost microcontrollers have sufficient power for network applications
- Microcontrollers are widely available and well suited for embedded applications
- Connectivity is appearing in silicon

Potential Applications

- Vending machine status and restocking
- Home automation and security
- Environmental monitoring
- Micro kiosks for Personal Digital Assistants
- Low-cost Internet appliances
- Affordable Internet adapters for existing equipment
- Distributed process control via Internet
- "Minimal" smart spaces

USNA - NIST collaboration

- Information Technology Laboratory at NIST: Alden Dima
 Weapons and Systems Department at USNA: Svetlana Avramov-Zamurovic and Carl Wick
- Goal: To explore use of 8-bit microcontrollers to achieve network connectivity
- Result: Two microcontroller systems were built that use a modem to connect to the Internet

Networked Microcontroller Systems developed at USNA and NIST

- System WAZ_1:
 - Consists of
 - Microchip's high-end microcontroller
 - Seiko's TCP/IP stack S7600
 - External modem
 - External memory required
 - "Monitor" facilitates program development and debugging

- System WAZ_2:
 - Consists of
 - Microchip's midrange microcontroller
 - Seiko's TCP/IP stack S7600
 - built-in modem
 - Interactive software
 - Microcontroller programmed in-circuit

WAZ_1 System

WAZ_1 System

WAZ_2 System

Internal **Analog** Microcontroller Modem telephone (PIC16F876) line (Cermetek) TCP/IP Stack Voltage level converters (Seiko S7600) Power supply Internet Microcontroller System Demo Connection to Development Kit PC stuff **Development Support Board**

WAZ_2 System

WAZ_2 Development and Deployment Modules

Demo: Architecture

Establishing a connection

- Microprocessor controls modem
 - modem initialization
 - connect command
 - Internet provider's phone number stored in memory
 - log in and password stored in memory
- TCP/IP stack controls connection
 - PPP connection established
 - IP address received

Establishing TCP connection

```
write_reg THR_IP0,21
                                           ;target IP adress
             write_reg THR_IP1,20
             write_reg THR_IP2,6
             write_reg THR_IP3,129
             write_reg H'20',0
                                           :socket index
             write reg H'22',H'10'
                                           ;socket configuration status low
             movlw
                           H'81'
                                           ;wait after reset
             call WAIT
             write_reg H'36',80
                                           ;target port info
             write_reg H'37',0
             write reg H'38',1
                                           ;our port info
             write reg H'39',0
             write reg H'22',2
                                           tcp client mode;
             write_reg H'24',1
                                           ;socket 0 activate
             movlw
                            H'88'
             call WAIT
             movlb 1
             movlw H'10'
             movwf VAL
    8mqool
             putlit 's'
                                           ;socket status pooling untill connection is established
             read_reg H'23'
             puthex regdata
             andwf regdata,WREG
             btfsc ALUSTA,Z
             goto loopm8
                                         Pervasive Computing 2001
May 2001
```

Demo: Functionality

- For the demonstration we have a web page where a user submits a request to light a red or a green LED.
- This request is stored in a 'task file'.
- Microcontroller downloads this ASCII file and performs the task
- The connection is terminated after the task has been completed

Demo Site:

http://xsun.sdct.itl.nist.gov/~avramov/hellopicframes.htm

Hello PicSelect LED

green
red

<u>S</u>ubmit

Demo:

Downloading task file

- Provide IP address and port of server where the task file is stored
- Provide the method by which the task file will be obtained and its exact location on the target server
 - in our example we used GET method to obtain text file stored on a server at NIST
 - task page location is: http://xsun.sdct.itl.nist.gov/~avramov/old_query.txt

Demo: Network Session

(monitored using hyper terminal)

- SEIKO READY
- MODEM READY
- c ;make connection
- DIALING 918005004767
- CONNECT TO SERVICE
- OUR IP: 81061F0A
- THEIR IP: 81061415
- GET ;get task file http://xsun.sdct.itl.nist.gov/~avramov/old_query.txt
- LED=red

May 2001

Examples:

Loading and recovering connection information

- Recover phone number => rf 18005004767
- Load IP address of a server where task
 file is located => li12962021
- Password =>p
- Login =>I
- \bullet Method =>M

WAZ_2 Budget

Component	COST	COST
	1000	1 unit
	units	
Microcontroller	\$ 5	\$ 10
TCP/IP Stack	\$ 8	\$ 10
Level shifters	\$ 2	\$ 5
Modem	\$ 55	\$ 100
RS232	\$ 2	\$ 5
Circuit board	\$ 2	\$ 20
Support components	\$ 1	\$ 5
TOTAL	\$ 75	\$ 155

Conclusions

- The demo shows that the overall data flow required for networked applications can be realized using microcontroller technology
- All of the Internet protocols and procedures were implemented
- Existing hardware provides low-cost solutions for microcontroller Internet connectivity

Conclusions

- Very robust Internet-connected microcontroller systems can be built
- Pervasive computing developers should not overlook 8-bit microcontroller-based solutions

Contact information

- Svetlana Avramov-Zamurovic
 - avramov@usna.edu
- Carl Wick
 - wick@usna.edu
 - Weapons and Systems Engineering Department
 - United States Naval Academy
 - 105 Maryland Avenue
 - Annapolis MD 21402